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ABSTRACT

Some simple procedures are provided for establishing the asymptotic

normality and uniform strong convergence of a class of functions that arise in

the context of estimating parameters from a type II censored sample. These

are used to streamline and strengthen the traditional treatment of the

asymptotic theory of maximum likelihood estimators based on censored data.

Further applications include the treatment of asymptotics of some modified

maximiun likelihood (MML) estimators. In particular, conditions are provided

for the consistency and limiting normality of the MML estimators of Mehrotra

and Nanda, and the asymptotic efficiencies of these estimators are evaluated.
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SIGNIFICANCE AND EXPLANATION

4% In reliability analysis, inferences on the parameters of a life

~ distribution often have to be based on censored or incompletely observed

data. Under the censoring scheme that permits observation of a predetermined

number of failures, several modifications of the maximum likelihood method

v~j were proposed with the goal of obtaining estimators that are relatively easy

to apply. Previous vorks on the large-sample properties of maximum likelihood

and modified maximum likelihood estimators have been rather sketchy, and the

methods too cumbersome to employ in multiple-censoring situations.

This paper develops a simple yet versatile approach that permits a

unified treatment of the large-sample properties of both maximum likelihood

and modified maximum likelihood estimators based on censored data. It is also

flexible enough to accommodate multiple censoring. In addition to providing

an improved theoretical treatment, the results help fill a gap of knowledge in

regard to the performance of the modified maximum likelihood estimators,

especially their loss of efficiency in relation to the severity of censoring.
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ON THE ASYMPTOTICS OF MAXIMUM LIKELIHOOD

AND RELATED ESTIMATORS BASED ON TYPE II CENSORED DATA

Gouri K. Bhattacharyya

1. INTRODUCTION

In a life-test setting, suppose the failure times of n units be mcdeled

as independent random variables X,,...,X n having a common continuous dis-

tribution. In general term, a type II censored sample refers to a specified

subset of the order statistics Y 14...4 Y of XlI..*,Xn . The most commonn

situation is censoring on the right which permits the first r (< n) order

statistics to be observed. However, left as well as multiple censoring are

also often used.

Letting f(x,O) and F(x,8) denote the probability density function

(pdf) and the distribution function (df) of the failure time, the log-likeli-

hood of a type II right censored sample is

r
f n(8) - log[nl/(n-r)iJ + . log f(yi,8 ) + (n-r) log F(Yr ,8) (1.1)

.- t=1

where F - I-F. Maximum likelihood (ML) estimation under specific parametric

models of the life distribution is widely discussed in the reliability litera-

ture. In regard to the asymptotic theory of ML, the standard theorems do not

,. apply to (1.1) because its terms are neither independent nor identically dis-

tributed. The work of Halperin (1952) still remains the universal reference

for a rigorous treatment of the asymptotics of ML in this context. However,

Halperin's approach, which rests on asymptotic expansions of certain

characteristic functions, involves quite tedious manipulations even for the

simplest case where 8 is real and the sample is single-censored.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Supported by the Office of Naval Research Grant N00014-78-C-0722.
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, A fair amount of work has grown on another front. In order to reduce the

computing job of itertively solving the likelihood equation or to obtain

simple estimators that permit a grip on their small-sample properties, some
modified maximum likelihood (MML) estimators have been proposed. These are

" generally targeted for location-scale models, and especially, for the normal

distribution. One interesting construct is due to Mehrotra and Nanda (1974).

who replace the 'hazard-rate' term 3 log F(Y r,8)/a6, that appears in the

* likelihood equation, by its expectation. While the small sample properties of

these 1ML estimators have been studied for some particular models, their

asymptotic efficiencies have not been investigated. Another type of MML

estimators, due to Tiku (1967, 1978), derives from a linear approximation of

the hazard-rate term. Although extensive simulation studies of these estima-

tors have been reported, a careful treatment of the asymptotic theory is

-' lacking.

The objectives of the present paper are twofold. First, we streamline

and strengthen the traditional treatment of the asymptotics of ML estimators

* with type II censored data. At the same time, we provide a general setting in

which the asymptotics of ML, the aforementioned MML's or other perturbations

of the estimating equation can be treated in a unified way. Our second goal

is to derive the asymptotic efficiency (AE) of the Mehrotra and Nanda MML

estimator and study the effect of the amount of censoring on the AE.

The key results about limiting normality and uniform strong convergence

are developed in Section 2. These are appropriately specialized in Sections 3

and 4 to handle the ML and MML estimators. Our treatment of asymptotic

normality is based on a result of Sethuraman (1961) concerning the conditional

and joint limit distribution of random vectors. It yields a considerable

." simplification over Halperin's treatment, almost to the level of simplicity of

-2-
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the lid case. Moreover, it makes the adaptation of the results to the multi-

censoring case quite transparent. Incidentally, Fligner and Hettmansperger

(1979) made another fruitful use of this approach in the context of some rank

statistics.

Results for the Mehrotra and Nanda ML estimator are developed in Section

*" 4 in a general setting, and then specialized to the location and scale para-

meters in Section 5. Numerical computations of the asymptotic variance and AR

are presented in Section 5 under the normal model for which these estimators

were found to have nice small-sample properties. These supplement the small-

sample variance and efficiency calculations of Mehrotra and Nanda (1974), and

show the effect of the amount of censoring. Section 6 briefly indicates how

the asymptotics of Tiku's MML estimator follow from our results.

2. THE PRINCIPAL TOOLS

. This section provides two results which are basic to the development of

asymptotic theory of ML and MML estimators based on type II censored data.

First we introduce some notation and assumptions. The parameter 8 is taken

to be a k-vector and the true value 0 is assumed to be an interior point of
k0

. the parameter space c R . An important role will be played by random

vectors of the form

r
T (8) n [ ) g(Yi,,) + (n-r)h(Y 0,1] (2.1)

n r

where g and h are functions on X x A + R and X denotes the sample

space of X 1. For simplicity, 0 will often be suppressed in functional

notation. For instance, f(x) will stand for f(x,8o), g(x) for g(Xo-°S.
and

-1 r
-. "T =T (8 )=n'1 g(Y) + (n-rlhlY) ( 2.2)

n n 0 r

-3-
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Unless specified otherwise, all limits are taken as n + =, and r is taken

. to be [np], the integer part of np where p e (0,1) is fixed. Throughout

it is assumed that f(x) is continuous at its p-quantile C, and f() > 0.

D
The notation + Nk(u,E) will be used for convergence in distribution to a k-

variate normal with mean U and covariance matrix E. Vectors will be

written as column vectors and a transpose will be denoted by *.

Our first concern is with the asymptotic distribution of Tn defined in

(2.2). Instead of working with sophisticated limit theorems for functions of

order statistics, we provide an elementary treatment by means of conditioning

on Yr. A result of Sethuraman (1961), stated in Lemma 1, would be instru-

mental to our approach.

Lema 1. Let (Cn and (nn) be sequences of random f- and m-vectors

defined on a probability space. If (a) for arbitrary t e R5', the con-

ditional distribution of En' given in = t, converges to NI(Bt,T), and

(b) Tn strongly converges in distribution to N m(O,A), then

En + NI(0,T + BAB).

Referring to (2.2), let and h denote the eth coordinate of g

w\ and h, a w 1,...,. Theorem I establishes the asymptotic normality of Tn.

Theorem 1. For a - 1,...,t, assume that (i) h'(x) -- dh (x)/dx exists

at x - C, (ii) g (x) is continuous at C, and (iii) g (x)f(x)dx <

!hn./2 mThen n 2 (T n-) * NI(0,Z) where

.-]g(x)f(x)dx + qh()

Z- + pqf-2 ()bb

(2.3)

T - JCg1x)g (x)f(x)dx - p'(JCg(x)f(x)dx)(J4g(x)f(x)dx)"

b - f(C)g(C) - p-f(C)J.g(x)f(x)dx + qh'(9)

-4-
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Proof. Observe that a linear function c Tn, of the components of Tr.,
n '

is again a function of the form (2.2) with £ 1, and c g and c A in

places of g and h. Therefore, it suffices to prove the result for the one-

dimensional case (I = ). We take g, h, and Tn to be real-valued

functions for the rest of the proof.

?/2
Letting 11n = n (Yr C' consider first the conditional limit distribu-

"ton 1/2 = =2

tion of J (T -u). Given n t or equivalently Y = + tn --
n n r n

the random variables YI,.'..Yr- are distributed as the order statistics of

a random sample of size r - 1 from the truncated pdf f(x)/F(Cn), x 4 n"

Let

F(C n) =n and denote the truncated moments of g(x) as

V 1 n = pn ) gfdx

-1 tn2 2
V2n = pn J_.g fdx - VIn

IVn<,:,

i1AIB [ [g(Y.) -vln

"= i-in

1/2 (r-i) +n-r) 1/2

[- V + i-C)- Jn gC(2n n In n n n

Conditionally, given nn = t, Aln is a sum of iid components centered at the

mean. We are in fact dealing with a triangular array since the common

distribution depends on n. By virtue of the assumptions (ii) and (iii), the

Lindeberg-Feller central limit theorem applies, and we have that

D
An N(O,T) where
InI

tp~imV2n ~ jgfdx - p (14,gfdx)2

The constant A2n can be written as

. :5-5-
.4,I
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A2n -/2 rnl) Pn - gfdx - ]' fdx]n2n4

+ n2 h(C n) qh(] + n g( n)

.- n"

!/2
:i using assumptions (M) and (ii) along with the relation n t, it is

straightforward to see that the three terms on the rhs converge to

tf(z)[g(c) - p-1  gfdx], tqh'() and 0 respectively. Consequently, the

conditional limit distribution of n (Tn- ) is N 1(bt,T) where

b f(g() - p- f(C) J4_gfdx + qh'(C)

Finally, n converges in density to N 1 (O,pqf-2 (C)) which implies

strong convergence of nn in distribution in the sense of Sethuraman

(1961). An application of Lemma I yields that n/2 (T -P) is asymptotically
".?n

normal with mean 0 and variance T + pqf 2 (C)b2  II

Remark. The above approach to proving Theorem I readily extends to the

case of multiple censoring. To illustrate, let us consider left censoring at

the observation r, - Enpl] and right censoring at r2 = [nP 2], 0 < P1 < P2< .

In this case, the relevant form of Tn  is
.1 r2

45-1 
r2

n ErIhl(Yr + I g(Yi) + (n-r 2 )h 2 (Yr "

I ir 1  2

With C denoting the p -quantile of f(x), a = 1,2, the vector n n

/ (YrI-1Yr2-C2) converges in density to a bivariate normal N210,1),

say. Conditionally, given n = t, the middle term of Tn  is distributed as

a sum of iid componants where the parent distribution has the doubly truncated

pdf f(x)/[F(C2) - F(C.)]I, C x ( C2 " Following the steps of proof of

Theorem 1, one arrives at the asymptotic normality of Tn along with an

explicit expression for the asymptotic covariance matrix. It

Z-.. ... . .0

. ".. . . . . . . .."



Our second result pertains to the convergence of T n(8), defined in

(2.1), with probability I (w.p.1) uniformly in a compact neighborhood of 0o0

Since the components of a vector T (8) can be individually treated for thisn

purpose, it suffices to consider the case of real-valued functions g and

h in Theorem 2.

Theorem 2. Assume that for a compact neighborhood B of o

i) g(x,e) is continuous in 8 e B for every x,

(ii) for 0 e B and all x, Ig(x,0)I 4 go(x) such that

J.go (x)f(x)dx <,

Ciii) hlx,O) is continuous on [C-e,1,+c 1] x B for some eI > 0.

Then

sup ITn(0) - VC8)1 + 0 w.p.1 (2.4)
8eB

• .where

i9) = JCg(x,g)f(x)dx + qh(C,e) (2.5)

-"- 
I r

Proof. Referring to (2.1), let Tin(a) n 1 g(Y.,8) and T2 ()In 1 2n-=

n (n-r)h(Y , ) so T (8) = TIn (0) + T 2n(). With XA(.) denoting the
r ninn

indicator function of the set A, we have the representation

T (8) = n ) g(xiC)X (X)
Ini=I r i

where A(Yr) - (-,Y ]. Consider its approximation by Tn0 (8)
r In -

-1 n
n I g(X.,e)X (X ) which is an average of iid components that are

*4.4 1 A(C) i•?.., i- i'

continuous in 8 and bounded by the integrable go" The uniform strong law

(cf. Jennrich 1969) yields

Ssup ITn (0 glx,)f(x)dx[ + 0 w.p.i
9eB 

n

Now, for an arbitrary e > 0, as n + -, Yr lies outside the interval

C t c at most finitely many times w.p.1. Consequently, for sufficiently

e.'. large n,

-7-
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0 n
,.-. ITn) - Te)I n ( g(xi~e)Ix(_X,¢+ (xi)

n
" K n I X (X

1 =1

where K bounds g(x,e) on [-c,C+C] x B. The last expression converges to

[KF(C+E) - F(C-e)] wop.1. By letting e + 0, we therefore obtain that

IT' () - T n(8)1 + 0 w-p.1 uniformly in B. With regard to T2n(
8 ), note

that sup Ih(x,8) - h(¢,e)l is a continuous function A e
8eB

Since Yr + C w.p.1, we have that IT2n(0) - qh(C,8)I 0 w-p.1 uniformly in

e e B. By combining the two parts, the proof is comp II

3. APPLICATION TO MLE

we proceed to show how the asymptotic normality and consistency results

for the maximum likelihood estimator (MLE) in the type II censored situation

can be obtained from simple adaptations of Theorems 1 and 2. It would be

enough to outline the main steps because the details are analogous to the

.* treatment of MLE in the iid case. Moreover, instead of displaying a composite

list of regularity conditions, it would be more instructive to state them as

and when they are needed.

Henceforth, we use an upper dot for the derivative of a function wrt 6,

0 and two dots for the second derivative. Referring to (1.1) and denoting

*(x,8) = log f(x,8), p(x,8) = log F(x,8) (3.1)

the likelihood equation is given by

r
.n ((Yi#n) + (n-r);(Y ,)= 0 .(3.2)

Since e is a k-vector, so is I (8) while £ (8) will be a k x k

' matrix. As before, the true 8 will often be suppressed in notation, for

-8-
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instance, (x) = (x, o)a

First, we establish the asymptotic normality of (/2 (6n -0 ) assuming

" that n6 I is a consistent sequence of roots. A Taylor expansion ofn

*n(6n ) 0 around 0 yields
n n 0

n- 2t (8) r [n/2 ( -8 )] (3.3)

n o n n o

where r is the random matrix -n- 1 £ (e) evaluated on the line segmentnl n

between n and 80. Now, n- I n (8 ) is a vector-valued function of then n o

form (2.2) with I = k, g = i, and h p. Theorem 1, specialized to these

g and h, readily yields the limiting normality. To obtain explicit

expressions for the mean and covariance, we assume that the derivative

3- Ixf(y,O)dy can be carried within the integral. This yields

h(x) = p(x) -[F(x) -1 Jxg(y)f(y)dy

(3.4)

h'(x) = [F(x)] - 1 [-g(x)f(x) + h(x)]

Using these results for x = , the expzessions (2.3) for the present case

*" reduce to

P = 0, b = -(pq)f 1f J4*fdx

(3.5)

Z S J .= J=f + q1 (jC fdx)(J fdx)

To establish that n/ 2 (n - o) + N k(0,J ) it remains to show that

r n + J w.p.1. To this end, we note that n £ (8) is a (matrix-valued)•n n

function of the form T (8) given in (2.1) with g =  (x,e) and
n

h = (x,8 ). Denoting

-J(e) S- !C *(x,B f(x)dx q( ,

n-1
Theorem 2 entails that, uniformly in 6 e B, -n- £ (a) + J(8) w.p.1.n

Assuming J(8) continuous at 8o, it then follows that r n  J(0 ) w.p.1.

In order to relate J(8o) to J we differentiate ]J_,f(x,8)dx + F(C,8) 1

-9-
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-. twice wrt 8 and obtain the identity

- (x,8)f(x,8)dx-

-4,..o

,'.-" = ./4_. , O~ ((~ l*x,B)dx + [F1€,O)1-

(C a (x,8)f(x,O)dx)(Ij 0(x,)f(x,e)dx)*

For e 80, the lhs equals J(e ) while the rhs equals J. This concludes

the proof of the asymptotic normality of n 2 (e -e 0.

Turning now to the issue of existence of a strongly consistent sequence

of roots fe It we examine the limiting behavior of the log likelihood ratio. n

-1
n ftn (I ) - I (e )]. This is again of the form T n (e) in (2.1), now a real-n ,n o

valued function, with the special g and h given by

g = log[f(x,8)/f(x)], h = log[F(x,8)/F(x)]

Theorem 2 entails that

n- [1 J log[f(x,e)/f(x)lf(x)dx
n n o (3.6)

+ q log[F(C,8)/q]

w.p.1 and uniformly in 8 e B. Evidently v(8 ) 0. To show that V(6) has

a local maximum at 8i we fix e e B, define the function u(x) as

U(X) = f(x,e)/f(x) , x <C

V" •

=F(C,B)/q , x ), C

and let Z be a random variable whose distribution has the pdf f(x) on

(-m,C) and a point mass q at x = . Then

.(B) - Eflog u(Z)]

4 log[E u(Z)] 0
-. 4

by Jensen's inequality and the fact that E u(Z) = F(C,8) + F(C,8) = 1. The

inequality is strict for a 8 6 ° once we impose the identifiability

0

condition:

.,4

-10-
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p" (f(x,8) Y, f(x, o ) , x I C > 0

In view of this and (3.6), the standard argument then leads to the existence

of a strongly consistent sequence of roots.

Remark. The collection of regularity conditions used in course of our

proofs is essentially the same as given by Halperin (1952) with the exception

that the third derivative was not needed in our treatment. Also, the second
derivative was not used in the consistency proof. On the other hand, we have

assumed P(x,B) to be continuous on [C-C,C+c] x B. Also, we have formalized

the identifiability condition which was not explicitly addressed by Halperin

(1952).

4. APPLICATION TO MMLE OF MEHROTRA AND NANDA

With *(x,O) and p(x,e) defined in (3.1), let

c) n( Ee(YrB) : n Rk (4.1)

and let n be a solution of the estimating equation
• fq n

r
" - *(YI,8) + (n-r)cn(e) 0 (4.2~i-I

Mehrotra and Nanda (1974) derived expressions for n under the normal andn

ganma models, and examined some exact properties including the bias and

variance. The object of this section is to derive the asymptotic properties

of this modified maximum likelihood estimator (MMLE) k including an

expression of its limiting covariance matrix. Although the currently known

applications are confined to location and scale parameters, the asymptotics

can be treated for general parameters without added complication.

The asymptotic normality of follows along the lines of Section 3

" -"with appropriate adaptations of Theorems I and 2. However, an additional

result in regard to the first-mean convergences of n' p(Yr,l is needed.

4-11-



This is stated in Lemma 2 and a proof is given in the Appendix. Also, in

addition to the assumptions of Section 3, some smoothness conditions will be

needed for the functions c n(). Specifically, we assume that the k x k

matrix of the partial derivatives n (0) converges to a limit v(8)

uniformly in 8 e B, and that v(8) is continuous at 80

Lemma 2. If the function f(x) = f(x,8 0 X + Rk is bounded, then

lim n/2 [c (e)- (',e 1] = 0.

To arrive at the asymptotic distribution of n we first introduce some

notation:

m = ;(C) - p-' Jfdx

T = ] *fdX - p 1(JfdX)(JC~fdX)*

= T + pqa*z (4.3)

*J, =j *f.Udx~ - v = v(9

A j - E (j--

It is to be noted that the matrix v and, a forteriori, J1  are not

necessarily symmetric.

Theorem 3. If 0 n be a consistent sequence of roots of the MML

equation (4.2), and the aforementioned conditions holds, then

n 2 (' -e ) + N k (0 ,A) where A is given in (4.3).

Outline of proof. In line with the treatment of MLE in Section 3, we

begin with a Taylor expansion

n- 1/2 11n(e0) =M [n/2 (t -e ) 4.4)n n o(4)
where the matrix Mn corresponds to -n- 1a11n()/ae - Mn(8). To establish

that nJ/211nle) Nk.1,Z), we refer to the rhs of (4.2), apply Theorem 1

. with g and h - 0 in order to handle the random term, and use Lemma 2

-12-
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to the non-random sequence cn (80). That the limiting mean is 0 follows

from the relation

jJofdx + qp(C) - 0

- Also, the above choices of g and h in Theorem 1 lead to the covariance

pmatrix Z, defined in (4.3).

Next, consider M n(8) and employ Theorem 2 with g * and h = 0.

Under the stated assumption about the uniform limit of ; (8), it thenn

follows that

Mn (6) + J1 ( ) -(* -;(x,O)f(x)dx - qv(8)

w.p.1 and uniformly in 8 e B. Finally, note that J1(0) is continuous at

80, and J 1 (8o) = JI defined in (4.3). The proof is completed by combining

these results. I

As for the existence of a strongly consistent sequence of MMLE b n" a

simple criterion can be provided when 8 is real-valued. In this case, the

equality 11n(bn) = 0 can be viewed as a necessary condition for the

maximization of a pseudo-likelihood function defined as

r
it Ie ) *(Yi#8) + (n-r)Cn ()

where C n (8) c 8)d8. One can then employ Theorem 2 to deduce thathr n n

n-1[n(8) - In(8 ) ] + I (8) -].log[f(x,)/f(x)]f(x)dx~(4.5)

+ q[C(B) - C(8o)]

w.p.1 and uniformly in 8 e B. Then pursuing the same lines of reasoning as

for the MLE, we have

Theorem 4. Assume 8 is real-valued and 0,(8) as defined in (4.5).

If i(8 ) - 0 and P (8) I s strictly concave in a neighborhood of

then a strongly consistent sequence of MMLE exists.

A simple criterion such as Theorem 4 does not emerge in the case of a

-13-
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vector parameter for the reason that the construction of a pseudo-likelihood

is not generally feasible. One would need to employ appropriate special

methods to handle the individual problems.

5. ASYMPTOTIC EFFICIENCY RESULTS FOR LOCATION AND SCALE

The function c n(8) takes a simple form when 8 is either a location or

scale parameter. This is why the Mehrotra and Nanda MMLE has been found

convenient for these cases, especially under the normal distribution. In this

section we derive the asymptotic efficiency (AE) of 8n relative to the MLE

; 0 for the location and scale models that are 'regular' in the sense that the

conditions of the preceding sections hold. Numerical values of the AE are

then computed for the normal model, and the effect of the amount of censoring

is examined.

* •5.1 Location

Here f(x,O) - f(x-0) and we take 8 = 0 without loss of generality

because both n and ; are equivariant. Henceforth, we use a prime to4.n n

denote differentiation wrt x while, as before, an upper dot denotes a

derivative wrt 8. Defining, *(x) = log f(x), and the hazard rate function

- 1.(x) = f(x)/F(x), we have

i (x,e) = -- '(x-e), (x,e) = X(x-8)

Snc (9) = Eo0(Y r ) c (5.1)

Here c n() is free of 8 so ;n (8) = 0 and Cn () = 8cn • Also, lim c n =

* For consistency of n , we refer to (4.5) and obtain

(0) - [,,(x-0) - #(x)lf(x)dx + q.(4)9

".oeat (0)
whose derivatives a r 0 ae (0) - 0, and pl(O) - *"(x)f(x)dx.

In order that 1(0) be negative, a simple sufficient condition is that

-14-
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log f(x) be concave. Hence, the existence of a consistent M4LE In is

ensured by the condition that the pdf f(x) is strongly unimodal.

For the asymptotic normality, we further assume that f'(x) is bounded

so Lemma 2 and Theorem 3 hold. Noting that J_*'(x)f(x)dx = ), and using

(4.3) we obtain

= -*;) + p-f(g)

T -][#,'(x) 2f(x)dx - p f 2(C) (5.2)

J= -j- *"(x)f(x)dx

Let AV(In) denote the asymptotic variance of n 1en-eo1. Using the

expression for A given in (4.3), we have

[* '(x)] 2 f(x)dx - P- f 2() + pq(p *'( 2

AV(O n - [Ct#"(x)f(x)dx]2  (53)

An alternative representation of this, in terms of truncated moments, will be

convenient for calculation. With X denoting a random variable which has

the (truncated) pdf p-lf(x), x 4 C, (5.3) reduces to

Var *'(X ) + q[E#'(X ) - 2,1 )12

n ) - 2 (5.4).V(B)p(34" (x)

IV aThe asymptotic variance of n 2 (e -6), denoted by AV(O ) is similarly
n n

obtained from the general expression in Section 3:

AV(n) =-1 = p-lvar #'(X ) + q-E2*'(X¢)J C (5.5)

The AE of n is then given by AV(8 )/AV(n ). These are computed for the
n n n

normal distribution in Example 1.

Example 1. Consider f(x) - O(x), the standard normal pdf, and let

W(x) denote its df. Here *'(x) - -x, #"(x) - -1, and the asymptotic

-15-
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variances involve the truncated moments

a p1 J xJ, (x)dx, j 1,2,...

(5.6)
2 2PC, , . cc MI  a a

Specifically, the AR e (C) of the Mehrotra and Nanda MMLE 8 in this case

1 n

is given by

e = (Co) + q 1 U2)(0 + q(C - H 1 (5.7)

2
Numerical computation is simplified by the fact that both Pj and (Y can be

expressed in terms of *(C) and *(C) by integration by parts. In

particular,

1- -*( )/*() , a2 - 1 - c( )/*1 )
(5.8)

02 2 1 - I;(1)/ 1€) - 2

Table I presents the values of e,(C) AV(8 ) and AV(n ) for different

C's and corresponding p's. Note that smaller values of p correspond to

the increased severity of censoring. Although, as p + 0, the limiting value

• of el(C) is zero, Table 1 shows an extremely slow approach to this limit. A

very high efficiency is retained even for 50% censoring.

5.2 Scale

We consider f(x,8) = 8-1 f(x/0) and take 8 - I without loss ofo0

generality. With *(x) and X(x) defined as before, we have
'p

*(x,e) = -log 8 + *(x/B)

;(x,e) = -8-1 - e-2x*,'(x/e) (5.9)

4(x,e) = e-2xX(x/g)

,-16-
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Also, c (8) -8k where kn - E1 [Y (Y)] is free of 8, and imn =

.X(C). Consequently, n (e) - -k n2, C (0) -k log 8, and v(8 ) =-X(C).. n n n n 0

In this case, expression (4.5) becomes

,,'1S - -p log 8 + I [#(x/0) - *(x)lf(x)dx + qCX(C) log 8

whose derivatives at 1 are ;I (I) - 0, and

': (1) - 1c, [x*'(x) + x2 "(,x)]f(x)dx

Therefore, a simple sufficient condition for the strong consistency of the

MMLE n is that [x$'(x) + x2 *"(x)] 4 0 for all x. For the standard

normal distribution, this function reduces to -2x2  so the condition holds.

Incidentally, it can be seen that if X is a positive random variable, this

condition is equivalent to strong unimodality of the pdf of log X.

The asymptotic variances iV( n) and AV(Wn) again follow from the

.4, general results obtained in Sections 3 and 4 as we specialize to the functions

given in (5.9). The algebra is straightforward although somewhat more tedious

than the location case. Here, use of Lemma 2 requires that f(x) and

*1 xf'(x) be bounded. Some relevant expressions are

a - -C**(C) + p IIC4 x*,(x)f(x)dx ,

: -" P + x'(x)]2f(x )d - p-[I (I + x*'(x))f(x)dx] '
,.. (5.10)

J1 - -] 4- [1 + 2x*'(x) + x2 *"(x)]f(x)dx + q)() ,

2 -12 2
Icon - 1 + x'lx)l flx)dx + q- C f W)

From these basic quantities, the asymptotic variances

AVI(n) = C2 +pq°z2  2

AvCO (T+ - )/J1 (.)
nAV(; I/0

are readily obtained.

-17-
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ExaMle 2. For the normal distribution f(x,e) = 9 *(x/8), we have

# 'x) - -x, *"(x) -1, and the expressions (5.10) reduce in terms of the

2
truncated moments aj defined in (5.6). Denoting V4 

= a 2 we obtain
>4 2

a = -a 2  T =

-1 21
J, = 2pa 2  , J = pv 4 + q (a2-1) 2

Consequently,

-1 2 2 2
AV(n ) p [v4 + q( ] -a )](2a )2

AV(; ) = p-1 q-1(a2 1 (5.12)n 4+ '(.2

4.

e2 (C) S- AE(b AV(; )/AV(4
n n n

Numerical computations are presented in Table 2. As in the case of MMLE

* of a normal mean studied in Example 1, the MMLE of the standard deviation does

not incur much loss of AE when p is large, that is, censoring is light.

Also, the AE tends to decrease in the extremely low range of p. However, it

is curious that unlike the monotone behavior found in Example 1, here

AV( n ) and e2() have humps over an intermediate range of p.

6. APPLICATION TO THE MMLE OF TIKU

In the context of estimating the mean and standard deviation of a normal

distribution from a type II censored sample, Tiku (1967) proposed a linear

approximation of the hazard rate term that appears in the likelihood equation.

Asymptotic normality and efficiency of this type of MMLE can also be obtained

from the basic tools developed in Section 2. It turns out that not only for

the normal model but for a general location-scale model as well, this type of

MMLE is asymptotically fully efficient. To indicate why this is so, it would

suffice to consider the location model f(x,e) = f(x-8) in which case the

b', -18-
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likelihood equation is

r
1(0) - - * ) '(Y-) + (n-rrX ( - 0 (6.1)

i-i

where A(x) = f(x)/i(x). Tiku's NSLE results from replacing (Yr-9) inN,
-(6.1) by its linear approximation h 1(Y r -) - aMY r -) + b vith a

and b - A(C) - W (C). Referring to the development in Section 3, in

particular, expressions (3.2) and (3.4), note that the function h(x) - X(x)

is now changed to h1 (x) - ax+b. However, with a and b specified above,

we have h(C) - h1 (C) and h'(C) - hj(C) so the results in '3.5) do not

change. Likewise, in place of p(C,S) - -h'(C-e) in (3.6) we now have

( ,) -h'(). However, their difference + 0 as 0 * 0 so we have the

same J(Oo), and hence the same asymptotic variance as for the MLE. This

clarifies Tiku's (1978) heuristic reasoning that the modified likelihood

equation is "asymptotically equivalent" to the original likelihood equation.

e1S.,

,a

-C

'C
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APPENDIX

Proof of Lemma 2. For simplicity we suppress 9 a in notation, and first

consider the case where 8 is real-valued. Let f r,n(.) denote the pdf of

" YrnY the r-th order statistic of a random sample Z I,..,Zn from F(x).

Since (x) - -F(x)/F(x), we have

.- n = 1% i(x)tf(x)]-'fr,n (x)dx

= [n/(n-r)] ]a F(X)f(r,n-ix)dx

= [n/(n-r)] E a(Yr,nI)

where a(x) - F(x). Since p( ) = -q- a(C) and (n-r)/n + q, it would

suffice to establish that

lim 1 / 2 [a(C) - E a(Y )] 0 . (A.1)r~n

Let S n(.) denote the empirical cdf of ZI,... ,Zn. Using a repre-

sentation due to Bahadur (1966) we write

r,n n n

w where Vn m f- Il)[p - Sn (C)], and Rn = O(n-3/4(log n)3 / 4) w.p.i as

* n + *. A Taylor expansion of a(Yr,n) around gives

/2 [a(Y r) - a(C) - V na'()] Win + W2n (A.2)

where

1n = n/2 V n a(nw ~/2v[a'(¢ n ) - a'(1;)]

(A.3)

W2 n!/ 2 a'(4 )R
2n n n

and Cn lies between C and Yr,n* Since EV = pq/[nf 2 (CH ,n + w.p.1,

and a*(x) = (x) is assumed bounded, we have

E21WInl f -2(4)pq E[a,(Cn) a- ()] 2 + 0
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Duttweiler (1973) establishes the order of the mean-square of Bahadur's

approximation. His result entails that

ER 2  f-2()(2pq/w)12 n 3/ 2 1 + o(1)]
*n

2n
an1 conseuently, E2n * 0. Thus, we have established that EIWlnI + 0 and

zIW 2 nI + 0 which imply that the lha of (A.2) converges to 0 in the first

mean. Since TVn - 0 for all n, the result (A.1) follows.

If S is vector-valued so are cn  and P( ), and the above argument

applies to each coordinate of n 2 c - 0. II
%n

%.%

.-.
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Table 1. Asymptotic Efficiency of the Mehrotra and

Nanda MMLE for a Normal Mean 8

p AV(8) AV(8) e()

-2.3263 .0100 13.7515 21.0546 .6531

-1.6449 .0500 4.3320 6.0791 .7126

-1.2816 .10,') 2.7845 3.7086 .7508

-" -.8416 .2000 1.8741 2.3395 .8011

-.5244 .3000 1.5266 1.8214 .8382

-.2533 .4000 1.3393 1.5410 .8691

.0000 .5000 1.2220 1.3634 .8963

.2533 .6000 1.1425 1.2405 .9210

.5244 .7000 1.0862 1.1509 .9438

.8416 .8000 1.0457 1.0837 .9649

1.2816 .9000 1.0172 1.0334 .9843

1.6449 .9500 1.0070 1.0141 .9930

2.3263 .9900 1.0010 1.0020 .9989

Table 2. Asymptotic Efficiency of the Mehrotra and

Nanda MMLE for a Normal Standard Deviation 8

p AV(e) AV(O) e ()

-2.3263 .0100 2.3729 3. 1241 .7595

-1.6449 .0500 1.3177 1.4939 .8820

-1.2816 .1000 1.1758 1.2333 .9533

-.8416 .2000 1.1469 1.1469 1.0000

-.5244 .3000 1.1364 1.1763 .9661

-.2533 .4000 1.0868 1.2250 .8872

.0000 .5000 1.0000 1.2500 .8000

.2533 .6000 .8930 1.2128 .7363

.5244 .7000 .7823 1.0872 .7195

.8416 .8000 .6779 .8854 .7657

1.2816 .9000 .5843 .6699 .8722

1.6449 .9500 .5414 .5787 .9355

2.3263 .9900 .5084 .5158 .9857
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